Help deciding between Moreplay and BeePre2

The Moreplay has three inputs and two outputs. The outputs are both active all the time.

I added an Lpad to my Moreplay to reduce the gain a tad. The Moreplay normally will output 5.5V with a 2V input. I just calculated a new Lpad that will change that to unity gain, 2Vin >>> 2Vout. See the drawing, it specifies the resistor type I used. Mouser caries them, both values are in stock. Paul, please correct me if I got this wrong.
 

Attachments

  • LPad for Moreplay.jpg
    LPad for Moreplay.jpg
    81.3 KB · Views: 30
FWIW, I reduced the gain on my Moreplay a while back using 2W TKD resistors (7.5K and 3.3K) on the stock pot. They are overkill for certain but very effective and less than $10 total. Pic is a visual for reference. For unity gain, it sounds like using Scott's calculated one's in place of the one's I used?? Interesting discussion and thanks (all) for the info about making a unity gain Moreplay.

 

Attachments

  • 20230929_195845a.jpg
    20230929_195845a.jpg
    496.1 KB · Views: 25
The resistor power rating required is quite low. Power dissipation based on a fixed voltage input is V^2/R = Watts. Assuming the highest voltage drop of 5.5V and the lowest resistance mentioned, that's 5.5^2/3300 = 1/100 of a watt. Any larger resistor will dissipate less power.
 
hmbscott said:
The Moreplay has three inputs and two outputs. The outputs are both active all the time.

I added an Lpad to my Moreplay to reduce the gain a tad. The Moreplay normally will output 5.5V with a 2V input. I just calculated a new Lpad that will change that to unity gain, 2Vin >>> 2Vout. See the drawing, it specifies the resistor type I used. Mouser caries them, both values are in stock. Paul, please correct me if I got this wrong.

Hi Scott!

Thanks a lot for taking the time to modify the schematic of the Moreplay for Unity gain. I really appreciate it. And 3 inputs is more than what I need. I will order the kit this week, and I will start putting together the preamplifier next weekend!

If I understood correctly, the only extra pieces I need to buy to achieve unity gain are those two resistors, is that right? because there is an L Pad in the kit I think.

And lastly, it would be good for me to not just solder but understand (even if it is just on a surface level) what is happening in the circuit. Is there any book that you would recommend to somebody to start understanding basic electronic principles for tube amplification?

Once again, thank you and everybody for being so helpful.
 
Alan, The two resistors are the Lpad (that term just is the name for connecting resistors to a signal input in that configuration) and yes, they are the only thing you need. You will connect them to the volume pot that comes with the kit. Note that you need two of each resistor, one for the left channel and one for the right channel. The kit doesn't include an Lpad.

Congrats on that choice, I'm sure you will enjoy both the process of building it and listening! And you will be amazed by the incredible value it represents.

One pretty good site to learn about tube tech is The Valve Wizard and this page is a good place to start: http://www.valvewizard.co.uk/gainstage.html. The author is British so some of the terminology differers from American terms.

The Moreplay, and most Bottlehead circuits are triode based and the majority are of the type known as common-cathode, which means the cathode is connected the ground circuit, usually with a low value resistor (hundreds of ohms) that sets it's bias. Bottlehead designs are not simple triode circuits though. They include several sophisticated and in some cases unique circuit designs that set apart their circuits in ways that contribute both their ease of construction, but more importantly, their superior performance.

Here's a bit of terminology can get you started on understanding the material, forgive me if you already know all this, but if you don't, it will really help comprehending the information at the beginning.

Valve - Britt's term for tube.

Common - refers to the ground circuit and basically means grounded. It comes from the fact that all parts of the circuit that a grounded are connected to the same "common" ground. By convention it is zero volts in the circuit and all other voltages are defined in reference to the ground being zero volts. You may also see a term "referenced to ground" which means either connected directly to ground with a wire, or with a resistor. Using a resistor will introduce a voltage offset if current flows (see Ohm's Law below).

Triode - A tube with three connections, Cathode, Grid, and Plate or Anode
  • The Cathode is heated to allow it to freely emit electrons.The cathode is held at a low slightly positive voltage typically
  • The Plate is held at a high positive voltage and will attract electrons from the cathode
  • The Grid is an open mesh electrode between the cathode and plate. By being placed so it's voltage is what the cathode experiences rather that the plate voltage, which the cathode would experience if there were no grid. The grid's voltage is modulated by the audio signal. By doing so it reduces electron flow from the cathode when the voltage dips and increases electron flow when the voltage rises. This causes a modulated current to flow to the plate, and that current passes through a load resistor producing a much larger voltage audio output signal (again see Ohm's Law below to understand the idea of a resistor converting current to voltage).
Bias - refers to setting the zero signal voltage relationships between the cathode, grid and plate. This is a design parameter that sets a tube to operate in a range of voltages suitable for the circuit's function. In the simplest case, bias is set with resistors connected either to ground or the B+ voltage, also called rail voltage or "rails".

B+ - refers to the high positive voltage that's provided by the amplifier power supply. Ideally it will remain a a fixed positive voltage typically in the 150 - 600 VDC range for tube amplifiers, the specific value depends on the operating needs of the tube type used. How well the power supply is designed will have a huge influence on how stable that voltage is under varying load and how free it is of AC ripple and noise. Any variation in B+ will result in unwanted modulation in the output audio signal, which is why power supply design is so critical. BTW, Britts call B+ "HT", short for High Tension. Tension is an old-timey British term for voltage.

Ohm's Law - This is super useful in understanding resistors: V = I X R, Voltage = Current times Resistance. The units are volts, amps, and ohms. This equation can be used to calculate bias voltages etc.

The Power Law - This allows you to calculate power if you know the voltage and current: P = V X I, Power is equal to Voltage times Current. The units are Watts, Volts and Amps.

Combining Ohms's Law and the Power Law allows calculating all kinds of useful things, like power dissipation in wire or resistors, speaker power output, and amp loads etc. One common way to use the combined equations is to substitute for voltage in the Power Law from Ohm's law, which gives this equation:
  • P = I^2 X R  This can tell you how much power is dissipated by wire or a resistor or a speaker if a constant current source is connected to it. If you substitue for current instead you get this equation.
  • P = V^2/R  This can tell you power is dissipated if a constant voltage source is connected.
These are the most important equations for understanding what electrical circuits are doing, and as you can see, they are surprisingly simple. But it's quite amazing how deeply your insight can be by learning how to apply them.
 
hmbscott said:
Alan, The two resistors are the Lpad (that term just is the name for connecting resistors to a signal input in that configuration) and yes, they are the only thing you need. You will connect them to the volume pot that comes with the kit. Note that you need two of each resistor, one for the left channel and one for the right channel. The kit doesn't include an Lpad.

Congrats on that choice, I'm sure you will enjoy both the process of building it and listening! And you will be amazed by the incredible value it represents.

One pretty good site to learn about tube tech is The Valve Wizard and this page is a good place to start: http://www.valvewizard.co.uk/gainstage.html. The author is British so some of the terminology differers from American terms.

The Moreplay, and most Bottlehead circuits are triode based and the majority are of the type known as common-cathode, which means the cathode is connected the ground circuit, usually with a low value resistor (hundreds of ohms) that sets it's bias. Bottlehead designs are not simple triode circuits though. They include several sophisticated and in some cases unique circuit designs that set apart their circuits in ways that contribute both their ease of construction, but more importantly, their superior performance.

Here's a bit of terminology can get you started on understanding the material, forgive me if you already know all this, but if you don't, it will really help comprehending the information at the beginning.

Valve - Britt's term for tube.

Common - refers to the ground circuit and basically means grounded. It comes from the fact that all parts of the circuit that a grounded are connected to the same "common" ground. By convention it is zero volts in the circuit and all other voltages are defined in reference to the ground being zero volts. You may also see a term "referenced to ground" which means either connected directly to ground with a wire, or with a resistor. Using a resistor will introduce a voltage offset if current flows (see Ohm's Law below).

Triode - A tube with three connections, Cathode, Grid, and Plate or Anode
  • The Cathode is heated to allow it to freely emit electrons.The cathode is held at a low slightly positive voltage typically
  • The Plate is held at a high positive voltage and will attract electrons from the cathode
  • The Grid is an open mesh electrode between the cathode and plate. By being placed so it's voltage is what the cathode experiences rather that the plate voltage, which the cathode would experience if there were no grid. The grid's voltage is modulated by the audio signal. By doing so it reduces electron flow from the cathode when the voltage dips and increases electron flow when the voltage rises. This causes a modulated current to flow to the plate, and that current passes through a load resistor producing a much larger voltage audio output signal (again see Ohm's Law below to understand the idea of a resistor converting current to voltage).
Bias - refers to setting the zero signal voltage relationships between the cathode, grid and plate. This is a design parameter that sets a tube to operate in a range of voltages suitable for the circuit's function. In the simplest case, bias is set with resistors connected either to ground or the B+ voltage, also called rail voltage or "rails".

B+ - refers to the high positive voltage that's provided by the amplifier power supply. Ideally it will remain a a fixed positive voltage typically in the 150 - 600 VDC range for tube amplifiers, the specific value depends on the operating needs of the tube type used. How well the power supply is designed will have a huge influence on how stable that voltage is under varying load and how free it is of AC ripple and noise. Any variation in B+ will result in unwanted modulation in the output audio signal, which is why power supply design is so critical. BTW, Britts call B+ "HT", short for High Tension. Tension is an old-timey British term for voltage.

Ohm's Law - This is super useful in understanding resistors: V = I X R, Voltage = Current times Resistance. The units are volts, amps, and ohms. This equation can be used to calculate bias voltages etc.

The Power Law - This allows you to calculate power if you know the voltage and current: P = V X I, Power is equal to Voltage times Current. The units are Watts, Volts and Amps.

Combining Ohms's Law and the Power Law allows calculating all kinds of useful things, like power dissipation in wire or resistors, speaker power output, and amp loads etc. One common way to use the combined equations is to substitute for voltage in the Power Law from Ohm's law, which gives this equation:
  • P = I^2 X R  This can tell you how much power is dissipated by wire or a resistor or a speaker if a constant current source is connected to it. If you substitue for current instead you get this equation.
  • P = V^2/R  This can tell you power is dissipated if a constant voltage source is connected.
These are the most important equations for understanding what electrical circuits are doing, and as you can see, they are surprisingly simple. But it's quite amazing how deeply your insight can be by learning how to apply them.

Scott, thanks a lot for the explanation and the links!!! I really appreciate it. I got a little derailed since we started a new project at home. I will surely read the Valve Wizard site.
 
I had a similar issue when integrating tubes into my setup. In practice, Moreplay works great with MiniDSP, but fine-tuning the resistors is key. If you enjoy DIY, check out Valve Wizard – it’s packed with helpful info!
 
ambd1,

I recently revisited the LPad in my Moreplay and after much advice from both Pauls and me learning a thing or two, I have moved my Lpad from the location shown above to between the selector switch and the balance pot. This puts it upstream of the tube and per Paul, in a location that has less negative impact on the sound. I found a significant improvement in highs in my system after making this change. With the original LPad location at the Volume pot the highs had been somewhat rolled off, now they are back and it's really noticeable on cymbal passages, so thanks Paul! I also learned a lot about selecting LPad resistor values to have less impact on the impedance of the circuit. Here's the new circuit location and where I physically put them in the amp (Note the black resistors on the wires between the selector switch and balance pot).
 

Attachments

  • LPad Bal Pot Circ.jpg
    LPad Bal Pot Circ.jpg
    77.3 KB · Views: 13
  • LPad Bal Pot Loc.jpg
    LPad Bal Pot Loc.jpg
    564.9 KB · Views: 15
Very interesting discussion. I have the nilai as well, and can confirm it needs long break in time and it benefits from Tube warm sound injection. I was incline to think to buy a beeper to inject warm, but if I understood correctly between the beepre2 and moreplay the moreplay has more tube classic sound?





 
DPetrini said:
Very interesting discussion. I have the nilai as well, and can confirm it needs long break in time and it benefits from Tube warm sound injection. I was incline to think to buy a beeper to inject warm, but if I understood correctly between the beepre2 and moreplay the moreplay has more tube classic sound?

My recent post regarding moving the LPad in my Moreplay and the impact that had on the high frequencies may be relevant to my earlier impressions of the Moreplay vs the Saga with the Nilai. It may explain the fairly stark high frequency difference between the two that I noted. Although I should note that I am no longer using the Nilai. It was replaced by a Stereomour, and that may have some influence over my recent observations.
 
Thanxs. My Stereomour was grabbed by a dearfriend and I got a nilai temporarily to close the music hole. I had in plan to replace the stereomour with kaju but price hit hard with those days Europe import duties that really dry you out.
Hence moved to the idea to build a pre to mate nilai and see where I end up.
 
Back
Top